Biliard merupakan suatu
permainan yang sudah tidak asing lagi di telinga kita. Cara bermainnya
pun mudah dipahami dan dimengerti walaupun prakteknya belum tentu
semudah itu karena saya pun masih dalam level pemula ^__^
Sebelum saya menjelaskan konsep fisika yang ada dalam permainan
biliard, saya akan menjelaskan cara bermain biliard terlebih dahulu..
Setelah saya berkonsultasi
dengan salah satu teman di kelas saya yang sudah jago bermain biliard,
saya akan menceritakan pada anda semua. Inti cerita permainan biliard
adalah bola putih polos sebagai patokan. Peralatan yang dibutuhkan
adalah bola putih, bola warna berjumlah 9 dengan masing-masing bola
diberi nomor, tongkat untuk menggerakkan bola, serta meja biliard.
Aturan utama adalah, setiap
pemain harus memasukkan keseluruhan bola bernomor sesuai urutan dengan
cara tongkat disodokkan pada bola putih yang diarahkan ke bola bernomor
sesuai urutan. Bola putih tidak dapat dipindah-pindah, harus mengikuti
permainan sebelumnya dimana bola putih berhenti. Jumlah pemain untuk
bola 9 adalah dua orang. Pemain pertama mengarahkan tongkat pada bola
putih dan harus memasukkan bola bernomor satu terlebih dahulu dengan
cara menyodok bola putih sehingga bola putih dan bola bernomor satu
saling terpantul (bertumbukan). Jika masuk, maka melanjutkan ke bola
nomor dua dan seterusnya. Jika tidak masuk, maka pemain pertama diganti
pemain kedua. Jika salah satu pemain salah memasukkan bola yaitu bola
yang masuk tidak urut nomor yang ada, maka pemain terkena foul dan
harus diganti oleh pemain lainnya yang boleh memindahkan bola putih
sesuai keinginan. Pemenang adalah yang berhasil memasukkan bola
bernomor 9 paling akhir.
Jika menggunakan bola 8 maka
jumlah pemain empat orang dan ada sedikit perbedaan peraturan. Sekian
pengetahuan umum permainan biliard yang bisa saya sampaikan,
selanjutnya saya akan menjelaskan prinsip fisika permainan ini.
Permainan ini secara dasar merupakan aplikasi dari konsep fisika mekanik yaitu momentum.
TUMBUKAN
Tumbukan yang terjadi antar
dua bola dimana sebelumnya telah diarahkan terhadap posisi tertentu
agar menumbuk bola yang ingin dimasukkan, sudut stick pemukul terhadap
bola putih, menjadi sangat berpengaruh pada keberhasilan seorang pemain
untuk memasukan bola ke lubang yang diinginkan.
Berikut adalah ilustrasi tumbukan yang terjadi antara dua bola (dalam hal ini bola putih dengan bola bernomor) :
Perhitungan awal yaitu menghitung bidang normal tumbukan yang berupa
garis penghubung antara 2 pusat bola. Cara termudah untuk menghitungnya
yaitu:
Selanjutnya adalah membagi setiap vektor kecepatan kedalam
normal component dan
tangential component.
Normal component untuk bola 2 akan searah dengan vektor normal, dan
normal component untuk bola 1 akan berlawanan arah dengan vektor normal.
Besarnya vektor normal ini dapat dihitung menggunakan perkalian
dot, seperti dibawah ini :
Untuk perhitungan tangential component menggunakan pengurangan vektor seperti berikut :
Komponen kecepatan tangensial tidak berubah saat kedua bola bertumbukan. Untuk itu digunakan rumus hukum kedua Newton
mv adalah momentum linier bola. Gaya total sama dengan nol pada dua
bola selama tumbukan dan dilambangkan p, sehingga Δp = 0 yang disebut
dengan konsep kekekalan momentum linier yang mengandung makna bahwa
momentum total sistem akan tetap konstan tanpa adanya pengaruh dari
gaya luar. Persamaan yang digunakan sebagai berikut :
Masa bola sama, sehingga diperoleh persamaan baru sebagai berikut :
Berdasarkan persamaan di atas, nilai total elastisitas dalam bola adalah :
GAYA GESEK
Selain tumbukan antar dua
bola, terdapat pula gaya gesek pada bola terhadap karpet di meja yang
mana bola meluncur dan menggelinding (rotasi).
Batas antara perubahan dari gerak meluncur menjadi gerak rotasi diberikan oleh persamaan berikut :
|Vp| = R. | ω |
Vp adalah batas kecepatan bola pada suatu titik kontak dengan
karpet, R adalah jari-jari bola, dan w adalah kecepatan sudut. Gaya
gesek yang terjadi sangat berpengaruh yang sesuai dengan hukum kedua
Newton dan dapat mencari nilai kecepatan sudut untuk gerak meluncur
yang ada berdasarkan persamaan berikut:
Untuk mencari kecepatan sudut pada gerak rotasi menggunakan rumus
yang sama, namun nilai koefisien gesek berbeda karena gaya gesek pada
gerak rotasi lebih kecil dengan gaya gesek pada gerak meluncur.